返回列表 回復 發帖
noe laaaaaaaa
Let see...Thanks...
好難.....
很麻烦,不过有解
把这三组乒乓球分别编号为 A组、B组、C组。公仔箱論壇) I( y. k# K: J
tvb now,tvbnow,bttvb; b/ K) k% L' I" f) c
  首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况: 5.39.217.762 a  x* w1 t/ s0 r
9 Q; t! I+ h. R2 i
  第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。
7 p. Z2 W0 L! t& G5 K" f  g1 s公仔箱論壇, T6 P# A1 C+ E
  其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况:
, C, c+ g; @+ c4 R* d; L3 J
+ |' l% J( A8 y5 s2 Y, f/ D3 F  1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。 TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。# z6 r, O+ J2 e1 y) H

  w0 z7 U4 K3 d3 x! L# I8 A2 [8 Y  称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。 tvb now,tvbnow,bttvb" ]( v5 n7 S- b4 M

) V* w2 j+ |2 n0 W. S2 m+ Utvb now,tvbnow,bttvb  2·天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。tvb now,tvbnow,bttvb& V- b: f8 E0 h* s. B
4 c& f) X/ o2 d" Q( x
  称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。 公仔箱論壇/ v, n, S9 D* S# x
tvb now,tvbnow,bttvb9 ^+ P3 l' w: x2 V+ m1 \3 e
  以上是第一次称之后出现第一种情况的分析。
第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。
% E9 u) c6 k  V" d$ F- ^: T0 c! E! C: ^7 \# T: D
  我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。
6 K. A* ]1 P7 ?  D/ j
/ Y9 L# ]# o$ p* }, Ctvb now,tvbnow,bttvb  这时,可以称第二次了。这次称后可能出现的是三种情况: 公仔箱論壇* i! N& _3 k  G- p

8 J8 F% q/ i' C, t2 k! i5.39.217.76  1·天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。 tvb now,tvbnow,bttvb9 }1 Y# f# n, Z0 Y  ^

, |& S! z. A, l- n" f5.39.217.76  这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球。 公仔箱論壇, x# P+ n6 ?. U: }" _' a

7 O5 W# L" B  ?+ k, ITVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。  2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3小U馐且蛭呀换坏腂2、A2、A3个球并未影响轻重,可见这三只球都是好球。
: c$ E9 S" t7 ~( Y2 H9 S5 STVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。
! Y+ |# O. i( A$ M) i. M9 A公仔箱論壇  以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1)。公仔箱論壇+ ~- ]4 r9 s  V4 Z' g& s5 h
TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。& `3 j8 o$ s; k4 [
  3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。
! U: b6 u3 }, k0 q& G: o2 Itvb now,tvbnow,bttvb
/ s2 |9 G  v/ M2 v# p, d" Ttvb now,tvbnow,bttvb  以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。 TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。# b2 c  d) O# T& i5 y2 b$ ]
公仔箱論壇0 g3 M( U; f$ y+ ^. p; O1 t
  根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球。如果我们现在假定出现的情况是A组轻于B组,推论与什么类似,这里就略了
hm...thats too easy man, 20seconds can solve the answer...:onion05:
太简单了吧
good
thanks alot
let see
厉害
; o5 H3 c! a% G公仔箱論壇公仔箱論壇: V( d7 b9 p  M' ]: R: X. f/ m2 H
[ 本帖最後由 wlg12003 於 2007-11-14 01:14 PM 編輯 ]
我的答案与三楼一样,但是仔细想想好像不对啊
做不出来
好難呀....
返回列表