返回列表 回復 發帖
noe laaaaaaaa
Let see...Thanks...
好難.....
很麻烦,不过有解
把这三组乒乓球分别编号为 A组、B组、C组。1 G& ]9 F, `$ \0 g
5.39.217.76( J# Y, }3 k4 @8 R
  首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况: 5.39.217.769 ~+ p& u) V, f

) ]0 j0 E) N4 K- i  ]  h  第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。
9 ^1 r& Y* d8 p3 ?0 e: Q5.39.217.76! ?6 y8 o5 `8 G
  其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况:
* W) l$ o" O: a( u8 V7 k& z" ~' uTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。+ R$ L$ V9 n3 \: s' f7 I
  1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。
* @  O0 ~% G* h( n7 I$ c. O  wtvb now,tvbnow,bttvb
& Z1 O# N: o1 a# F7 |  U4 u5 d4 ]公仔箱論壇  称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。
: e6 }* d. l$ H1 O, u& k5.39.217.76
% X" Z, M/ q* e7 p& }  2·天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。5.39.217.76; p+ [9 U& \+ p! z4 f* n- b
公仔箱論壇: Y9 [* A4 P! B% f' R6 Z
  称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。
9 T. g% I4 U5 W, ?% ^: ]公仔箱論壇公仔箱論壇# @0 l: t+ W0 ~  b1 V
  以上是第一次称之后出现第一种情况的分析。
第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。 公仔箱論壇3 x# @% z% ?( D; j; a+ F: T  _# A
公仔箱論壇9 M! s6 R+ x5 p) s5 Y. R4 ]
  我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。公仔箱論壇) Y3 b; n* m9 I
5.39.217.76( E, m& C' D: W" y+ {* Z! _: w% `( |
  这时,可以称第二次了。这次称后可能出现的是三种情况:
5 B3 g1 U4 t* Y5.39.217.76tvb now,tvbnow,bttvb. g/ P% B5 z2 l$ y) r/ z0 `
  1·天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。
2 t9 V0 {8 w; m$ H0 S) z. Y1 H公仔箱論壇
0 r  E! T9 K" A& s- p$ s公仔箱論壇  这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球。
: b) [& P; m* B9 J, M5.39.217.76
1 H; S4 [3 L# D2 ?3 Y, |" BTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。  2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3小U馐且蛭呀换坏腂2、A2、A3个球并未影响轻重,可见这三只球都是好球。 5.39.217.76* r5 \5 r+ e* V* h1 _7 n. O6 m& y
  y4 z" S0 H! s0 K' m. }
  以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1)。
/ E/ J0 V% J8 }
8 T5 P5 o. B  c8 yTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。  3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。
, a; q0 ]! X4 k7 j2 ?9 a0 O  t$ s' qTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。5 f$ l# j) |+ y& P3 O
  以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。
5 G  s5 g6 J. R& ?, ]8 \
0 p0 `& z! o5 T9 [4 X公仔箱論壇  根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球。如果我们现在假定出现的情况是A组轻于B组,推论与什么类似,这里就略了
hm...thats too easy man, 20seconds can solve the answer...:onion05:
太简单了吧
good
thanks alot
let see
厉害
( ^+ ]7 Q6 I6 ]4 S: d9 }$ g4 \+ Q
8 o% z$ t! u" ^$ m2 y0 @8 @[ 本帖最後由 wlg12003 於 2007-11-14 01:14 PM 編輯 ]
我的答案与三楼一样,但是仔细想想好像不对啊
做不出来
好難呀....
返回列表