返回列表 回復 發帖
noe laaaaaaaa
Let see...Thanks...
好難.....
很麻烦,不过有解
把这三组乒乓球分别编号为 A组、B组、C组。
$ }# T+ [+ w! btvb now,tvbnow,bttvb
$ I) l# c' H. b: j$ T) M0 Y7 G7 q公仔箱論壇  首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况:
4 M# e" G% T3 ]% n) h+ f/ P5.39.217.765.39.217.763 z# x" S% i0 r5 U1 X
  第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。
3 R) f1 e6 A8 `: D5.39.217.76
' L$ b( O+ r  K. q5 e5.39.217.76  其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况:
: J' P* E( K! A% H5.39.217.765.39.217.767 j4 j% [* T  j: m
  1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。
# h8 f7 z+ J2 p0 ~+ r! u$ t公仔箱論壇
& d3 }2 U$ W9 i9 t6 x' TTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。  称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。 5.39.217.76& T/ r, [5 S0 z, G3 E) B* p9 i

% ~2 K. \& V; P/ j5.39.217.76  2·天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。公仔箱論壇/ s1 N! `# J5 e$ |/ m0 h
tvb now,tvbnow,bttvb5 h. a* C& l) N; w; i! \, Q3 J
  称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。
8 ?5 S5 r) F! Y; G/ _: E! q# b
/ ~$ [, B: t' R0 m5.39.217.76  以上是第一次称之后出现第一种情况的分析。
第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。 - z' I% g* q% A* J4 M" h# N+ g( e

' T- Y; O! s0 w' \' D. ?( O5.39.217.76  我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。公仔箱論壇; ~! a  J3 ~: H1 V! Z

0 H, p% ?0 S8 B7 wtvb now,tvbnow,bttvb  这时,可以称第二次了。这次称后可能出现的是三种情况: 9 J$ H" w* e/ `0 j( u

$ b. u% F* X5 u3 @/ m; J4 @, @公仔箱論壇  1·天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。
, f& Y5 l# n3 M* F
4 \- |9 Y3 `  `6 D) ^, Y公仔箱論壇  这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球。
0 U5 ?! V+ a1 E; k4 T9 p7 q* R; ?8 J) TTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。公仔箱論壇. ?7 V. [, W) l$ i0 U
  2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3小U馐且蛭呀换坏腂2、A2、A3个球并未影响轻重,可见这三只球都是好球。 . O2 q6 }% ?* m' x; \; C
, g" g  H) S4 |+ ]/ }- f2 R7 \
  以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1)。
6 d( Y2 K3 h4 @. s" e. l, Qtvb now,tvbnow,bttvb
' a. m0 S8 `; `  3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。
. L- w) ?3 r7 f7 `
" u3 W+ J7 I$ O6 T! Y+ A7 s  以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。 5.39.217.76$ Y0 T0 ]- ~9 F7 Y

- M, C( K  t+ y- _6 W% |7 S  根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球。如果我们现在假定出现的情况是A组轻于B组,推论与什么类似,这里就略了
hm...thats too easy man, 20seconds can solve the answer...:onion05:
太简单了吧
good
thanks alot
let see
厉害9 ]! k$ j2 `' Q/ r7 p( K' v
TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。' C! E5 y. \) Z  c0 p3 B* F: h
[ 本帖最後由 wlg12003 於 2007-11-14 01:14 PM 編輯 ]
我的答案与三楼一样,但是仔细想想好像不对啊
做不出来
好難呀....
返回列表