返回列表 回復 發帖
很麻烦,不过有解
把这三组乒乓球分别编号为 A组、B组、C组。5.39.217.76! A0 }& ^! U) M  ~8 j/ d& k  J5 w
6 m% T+ v2 `9 P* Q* {5 V
  首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况: 公仔箱論壇6 ]* z* D) ^: _0 e8 Z  P
TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。7 b3 L* m( g- v& B( p1 F% R+ w
  第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。 公仔箱論壇! E5 q1 S* X4 b/ b
7 ]- A, }7 k3 O' P% x) U
  其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况: 5.39.217.76! j2 \2 G4 E! U3 |# M
5.39.217.76# `8 |* Z; u: D
  1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。 . w+ f& a( ~5 |; n) @

! a4 K7 Y$ Z& L2 N! STVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。  称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。
8 _: s# r" ^8 d' h/ i/ B/ f) S) T& @! e, r% q
  2·天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。
' Q& \! w1 a" @6 D) m- Q公仔箱論壇8 V. E( E% D" K3 b$ H8 K& g- n
  称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。 tvb now,tvbnow,bttvb3 ~# a( @5 c5 u. s( y  B% h! d

+ a2 @9 X7 G% l  U# iTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。  以上是第一次称之后出现第一种情况的分析。
第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。 & E" R) i. @( \1 X. ]2 \; ]

6 k. H1 v: H2 Y2 s0 y% s  我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。
. f; u& z& s3 B5.39.217.76
! p+ e' H6 t8 [& `# D  这时,可以称第二次了。这次称后可能出现的是三种情况:
8 Z/ K+ n& n2 M! ?公仔箱論壇tvb now,tvbnow,bttvb# D( [$ ]( k4 J2 V+ m8 U9 {2 S
  1·天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。
- s! J. ~! |5 ]; H6 l公仔箱論壇
3 J* k$ @/ K1 \5 `* X公仔箱論壇  这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球。
7 b9 M  ~- @+ KTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。
+ }' }) w6 A( g, I公仔箱論壇  2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3小U馐且蛭呀换坏腂2、A2、A3个球并未影响轻重,可见这三只球都是好球。
1 M. p( e0 F# H7 O- H
7 c$ D  Z$ j( ?) m! w3 `  以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1)。5.39.217.76" z$ k4 X; c/ C& H5 O- x/ ?# [
+ w6 d9 @  M% B5 B
  3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。
) K5 w7 S3 v0 x7 ?! J, aTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。
/ R& K# E  [( `( A$ F% V  以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。
. ^6 d- g) I3 Z" y
. O- y* [& X1 f# G$ x  根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球。如果我们现在假定出现的情况是A组轻于B组,推论与什么类似,这里就略了
返回列表