返回列表 回復 發帖

[IQ題] 这三个数分别是什么?

有3个正整数,任意两个相乘加1,都是第三个的整数倍,这三个数分别是多少?
! f% g, Q2 e, Z+ {0 c) u( L+ b3 r别猜答案,会算的给出过程.
另外,答案没有在题目里直接公布,不知道怎么隐藏,呵呵,所以只好先看看有没有人会了
是1 2 3
  u# |% ]9 G5 z! F+ L$ k3 T7 x$ F5.39.217.76因为1的以外的所有正整数都是它的整数倍
好多答案啊``无聊的问题``
1 1 1, because any number can have factor of 1. also, only 1 can be true if any random number multiple plus has to be divided by the remaining digit. So, 1 1 1 is my answer.
249还有123
123 and 789?
three 1
123.。。
1 1 1
我列了个复杂的方程,但解不出了。不过如果不是1、1、1,楼主可能得注明是“三个不同的正整数”
111, 789 ... and many many others.
They would be 111 or 1235.39.217.760 s+ B( _' l1 f
For 111 would be 1x1+1=2 that is 2 times of 3rd 1
: e  [9 ]% d+ \* J$ ztvb now,tvbnow,bttvbFor 123
3 x- U9 T5 D: S5 z1x2+1=3 that is 1 time of 36 `8 x  H* F% r" h
1x3+1=4 that is 2 times of 2tvb now,tvbnow,bttvb5 A, }" P$ [# \' k, i2 ~
2x3+1=7 thta is 7 times of 1
返回列表